# Q. The integral $\int^{\pi/2}_{\pi/4} ( 2 \, cosec \, x )^{17} \, dx$ is equal to

JEE Advanced JEE Advanced 2014Integrals

Solution:

## PLAN This type of question can be done using appropriate substitution Given, $I = \int^{\pi/2}_{\pi/4} ( 2 \, cosec \, x )^{17} \, dx$ $\, \, \, \, \, \, \, \, \, = \int^{\pi/2}_{\pi/4} \dfrac{ 2^{17} ( cosec\, x )^{16} \, cosec \, x ( cosec \, x + cot x ) }{(cosec x + \cot x)} \, dx$ Let $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, cosec x + \cot x = t$ $\Rightarrow ( - cosec \, x .\cot \, x - cosec^2 \, x ) \, dx = dt$ and $\, cosec \, x - \cot \, x = 1/t$ $\Rightarrow 2 cosec x = t + \dfrac{1}{t}$ $\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, I = - \int^1_{ \sqrt 2 + 1 } \, 2^{17} \bigg ( \dfrac{ t + \dfrac{1}{t}}{2}\bigg )^{16} \dfrac{dt}{t}$ let $\, t = e^u \Rightarrow \, dt = e^u \, d \, u , when \, t = 1 , e^u = 1 \Rightarrow u = 0$ and when $t = \sqrt 2 + 1 , e^u = \sqrt 2 + 1$ $\Rightarrow u =$ In $Q( \sqrt 2 + 1 )$ $\Rightarrow I = -\int^0_{In ( \sqrt 2 + 1 )} 2( e^u + e^{-u} )^{16} \dfrac{ e^u \, du }{ e^u}$ $\Rightarrow =2 \int^0_{In ( \sqrt 2 + 1 )} ( e^u + e^{-u} )^{16} \, du$

You must select option to get answer and solution

## 2. If $a \in R$ and the equation $- 3 (x - [ x] )^2 + 2 (x - [ x] ) + a^2 = 0$ (where $, [x]$ denotes the greatest integer $\le x)$ has no integral solution, then all possible values of a lie in the interval.

Complex Numbers and Quadratic Equations

Conic Sections

Matrices

Determinants

Conic Sections

AIEEE 2002 Sets

## 2. For $r = 0, 1, ... , 10,$ if $A_r,B_r$ and $C_r$ denote respectively the coefficient of $x^r$ in the expansions of $(1 + x)^{10}, (1 + x)^{20}$ and $(1 + x)^{30}$. Then, $\displaystyle \sum A_r(B_{10}B_r-C_{10}A_r)$ is equal to

IIT JEE 2010 Binomial Theorem

## 3. Let $\omega \ne 1$ be a cube root of unity and S be the set of all non-singular matrices of the form $\begin {bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end {bmatrix}$ where each of a , b and c is either $\omega \ or \ omega^2$ Then, the number of distinct matrices in the set S is

IIT JEE 2011 Determinants

## 4. Perpendicular are drawn from points on the line $\dfrac{x+2}{2}=\dfrac{y+1}{-1}= \dfrac{z}{3}$ to the plane $x+ y + z = 3$. The feet of perpendiculars lie on the line

JEE Advanced 2013 Introduction to Three Dimensional Geometry

## 5. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 6. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 7. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 8. Let AB be a chord of the circle $x^2 + y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the $\Delta PAB$ as P moves on the circle, is

IIT JEE 2001 Conic Sections

## 9. The centre of the circle passing through the point (0, 1)and touching the curve $y = x^2 at (2,4)$ is

IIT JEE 1983 Conic Sections

## 10. The coefficient of $x^n$ in expansion of $(1+ x)(1- x)^n$ is

AIEEE 2004 Binomial Theorem