# Q. The integral $\int^{\pi/2}_{\pi/4} ( 2 \ cosec \ x )^{17} \ dx$ is equal to

Solution:

## PLAN This type of question can be done using appropriate substitution Given, $I = \int^{\pi/2}_{\pi/4} ( 2 \ cosec \ x )^{17} \ dx$ $\ \ \ \ \ \ \ \ \ = \int^{\pi/2}_{\pi/4} \frac{ 2^{17} ( cosec\ x )^{16} \ cosec \ x ( cosec \ x + cot x ) }{(cosec x + \cot x)} \ dx$ Let $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ cosec x + \cot x = t$ $\Rightarrow ( - cosec \ x .\cot \ x - cosec^2 \ x ) \ dx = dt$ and $\ cosec \ x - \cot \ x = 1/t$ $\Rightarrow 2 cosec x = t + \frac{1}{t}$ $\therefore \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ I = - \int^1_{ \sqrt 2 + 1 } \ 2^{17} \bigg ( \frac{ t + \frac{1}{t}}{2}\bigg )^{16} \frac{dt}{t}$ let $\ t = e^u \Rightarrow \ dt = e^u \ d \ u , when \ t = 1 , e^u = 1 \Rightarrow u = 0$ and when $t = \sqrt 2 + 1 , e^u = \sqrt 2 + 1$ $\Rightarrow u =$ In $Q( \sqrt 2 + 1 )$ $\Rightarrow I = -\int^0_{In ( \sqrt 2 + 1 )} 2( e^u + e^{-u} )^{16} \frac{ e^u \ du }{ e^u}$ $\Rightarrow =2 \int^0_{In ( \sqrt 2 + 1 )} ( e^u + e^{-u} )^{16} \ du$

You must select option to get answer and solution

Conic Sections

## 1. If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then

IIT JEE 1999 Complex Numbers and Quadratic Equations

## 2. Perpendicular are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}= \frac{z}{3}$ to the plane $x+ y + z = 3$. The feet of perpendiculars lie on the line

JEE Advanced 2013 Introduction to Three Dimensional Geometry

## 3. If $\int\limits \frac{\cos \, 8x + 1}{ \tan \, 2x - \cot \, 2x} dx = a \, \cos \, 8x + c ,$ then $a$ =

COMEDK 2015 Integrals

## 4. Let AB be a chord of the circle $x^2 + y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the $\Delta PAB$ as P moves on the circle, is

IIT JEE 2001 Conic Sections

## 5. For $r = 0, 1, ... , 10,$ if $A_r,B_r$ and $C_r$ denote respectively the coefficient of $x^r$ in the expansions of $(1 + x)^{10}, (1 + x)^{20}$ and $(1 + x)^{30}$. Then, $\displaystyle \sum A_r(B_{10}B_r-C_{10}A_r)$ is equal to

IIT JEE 2010 Binomial Theorem

## 6. If the first and the $(2n - 1)th$ term of an $AP, GP$ and $HP$ are equal and their nth terms are $a, b$ and $c$ respectively, then

IIT JEE 1988 Sequences and Series

## 7. The largest interval for which $x^{12} - x^9 + x^4 - x + 1 > 0$ is

IIT JEE 1982 Complex Numbers and Quadratic Equations

## 8. If $\alpha$ and $\beta$ are the roots of $x^2+px+q=0$ and $\alpha^4$,$\beta^4$ are the roots of $x^2-rx+s=0,$ then the equation $x^2-4qx+2q^2-r=0$ has always

IIT JEE 1989 Complex Numbers and Quadratic Equations

## 9. If $^{n-1}C_r =(k^2 -3) \ ^nC_{r+1}$then k belongs to

IIT JEE 2004 Binomial Theorem

## 10. If $x^2 + y^2 + z^2 = r^2,$ then $\tan^{-1} \left(\frac{xy}{zr}\right) +\tan^{-1}\left(\frac{yz}{xr}\right) +\tan^{-1}\left(\frac{zx}{yr}\right)$ is equal to

COMEDK 2006 Application of Integrals