Q. The energy required to take a satellite to a height 'h' above Earth surface (radius of Earth = $6.4 \times 10^3 \; km) $ is $E_1$ and kinetic energy required for the satellite to be in a circular orbit at this height is $E_2$. The value of h for which $E_1 $ and $E_2$ are equal, is:

Solution:

$U_{surface} + E_1 = U_h$
KE of satelite is zero at earth surface & at height h $ - \frac{GM_{e}m}{R_{e}} + E_{1} = - \frac{GM_{e}m}{\left(R_{e}+h\right)} $
$ E_{1} =GM_{e}m \left( \frac{1}{R_{e}} - \frac{1}{R_{e} +h}\right) $
$E_{1} = \frac{GM_{e}m}{\left(R_{e} +h\right)} \times\frac{h}{R_{e}} $
Gravitational attraction $ F_{G} = ma_{C} = \frac{mv^{2}}{\left(R_{e} +h\right)} $
$E_{2 } \Rightarrow \frac{mv^{2}}{\left(R_{e} +h\right)} = \frac{GM_{e}m}{\left(R_{e} + h\right)^{2}} $
$ mv^{2} = \frac{GM_{e}m}{\left(R_{e} +h\right) } $
$E_{2} = \frac{mv^{2}}{2} = \frac{GM_{e}m}{2 \left(R_{e} + h\right)}$
$ E_{1} =E_{2} $
$ \frac{h}{R_{e}} = \frac{1}{2} \Rightarrow h = \frac{R_{e}}{2} = 3200 $ km

You must select option to get answer and solution

Questions from JEE Main 2019

Physics Most Viewed Questions

6. The spectrum of an oil flame is an example for ...........

KCET 2010 Dual Nature Of Radiation And Matter