# Q. The value of $\int^{\pi}_{-\pi} \dfrac{ \cos^2 \, x }{ 1 + a^x } \, dx , a> 0$ is

IIT JEEIIT JEE 2001Integrals

Solution:

## Let $I = \int^{\pi}_{-\pi} \dfrac{ \cos^2 \, x }{ 1 + a^x } \, dx ...................(1)$ $= \int^{\pi}_{-\pi} \dfrac{ \cos^2 \, ( -x ) }{ 1 + a^{-x} } \, d( -x)$ $I = \int^{\pi}_{-\pi} \dfrac{ \cos^2 \, {x } }{ 1 + a^{x} } \, dx................(2)$ On adding Eqs. (i) and (ii), we get $2I = \int^{\pi} _{-\pi} \bigg ( \dfrac{ 1 + a^x}{1 + a^x } \bigg ) \cos^2 \, x \, d \, x$ $= \int^{\pi} _{-\pi} \cos^2 \, x \, d \, x = 2 \int^{\pi}_{0} \dfrac{ 1 + \cos \, 2x}{2} dx$ $[x]^{\pi}_{0} + 2 \int^{\pi/ 2 }_ 0 \, \cos \, 2x \, dx = \pi + 0$ $2I = \pi \Rightarrow = \pi / 2$

You must select option to get answer and solution

Conic Sections

Vector Algebra

Conic Sections

Determinants

AIEEE 2002 Sets

## 2. For $r = 0, 1, ... , 10,$ if $A_r,B_r$ and $C_r$ denote respectively the coefficient of $x^r$ in the expansions of $(1 + x)^{10}, (1 + x)^{20}$ and $(1 + x)^{30}$. Then, $\displaystyle \sum A_r(B_{10}B_r-C_{10}A_r)$ is equal to

IIT JEE 2010 Binomial Theorem

## 3. Let $\omega \ne 1$ be a cube root of unity and S be the set of all non-singular matrices of the form $\begin {bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end {bmatrix}$ where each of a , b and c is either $\omega \ or \ omega^2$ Then, the number of distinct matrices in the set S is

IIT JEE 2011 Determinants

## 4. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 5. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 6. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 7. Perpendicular are drawn from points on the line $\dfrac{x+2}{2}=\dfrac{y+1}{-1}= \dfrac{z}{3}$ to the plane $x+ y + z = 3$. The feet of perpendiculars lie on the line

JEE Advanced 2013 Introduction to Three Dimensional Geometry

## 8. Let AB be a chord of the circle $x^2 + y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the $\Delta PAB$ as P moves on the circle, is

IIT JEE 2001 Conic Sections

## 9. The centre of the circle passing through the point (0, 1)and touching the curve $y = x^2 at (2,4)$ is

IIT JEE 1983 Conic Sections