# Q. Perpendicular are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}= \frac{z}{3}$ to the plane $x+ y + z = 3$. The feet of perpendiculars lie on the line

JEE Advanced JEE Advanced 2013Introduction to Three Dimensional Geometry

Solution:

## PLAN To find the foot of perpendiculars and find its locus. $\, \, \, \, \, \, \, \,$ Formula used $\, \, \, \, \, \, \, \,$ Foot of perpendicular from $(x_1,y_1,z_1)$ to $\, \, \, \, \, \, \, \,$ $ax+by+cz+d = 0\, be \, (x_2,y_2,z_2)$ then $\hspace25mm \frac{x_2-x_1}{a} = \frac{y_2-y_1}{b} = \frac{z_2-z_1}{c}$ $\hspace35mm = \frac{-(ax_1+by_1+cz_1+d)}{a^2+b^2+c^2}$ Any point on $\frac{x+2}{2} = \frac{y+1}{-1} =\frac{z}{3} = \lambda$ $\Rightarrow$ $\hspace30mm x = 2 \lambda - 2, y = - \lambda - 1, z = 3 \lambda$ Let foot of perpendicular from $(2 \lambda -2,-\lambda-1,3\lambda)$ to x+ y + z = 3 be $(x_2,y_2,z_2)$. $\therefore$ $\, \, \, \frac{x_2-(2 \lambda-2)}{1} = \frac{y_2-(- \lambda-1)}{1} =\frac{z_2-(3 \lambda)}{1}$ $\hspace30mm =\frac{(2 \lambda-2 - \lambda - 1 + 3\lambda-3 )}{1+1+1}$ $\Rightarrow \, \, \, \, x_2 - 2 \lambda + 2= y_2 + \lambda + 1 = z_2 - 3\lambda = 2 -\frac{4\lambda}{3}$ $\therefore$ $\hspace20mm x_2 =\frac{2 \lambda}{3}, y_2 = 1 - \frac{7 \lambda}{3}, + 2= z_2 = 2 + \frac{5 \lambda}{3}$ $\Rightarrow$ $\hspace20mm \lambda =\frac{x_2 - 0 }{2/3}, = 1 - \frac{y_2-1}{-7/3}, = + \frac{z_2 - 2}{5/3}$ Hence, foot of perpendicular lie on $=\frac{x }{2/3} = \frac{y-1}{-7/3} = \frac{z - 2}{5/3} \, \, \, \Rightarrow \, \, \frac{x }{2}= \frac{y-1}{-7} = \frac{z - 2}{5}$

You must select option to get answer and solution

Conic Sections

AIEEE 2002 Sets

## 2. For $r = 0, 1, ... , 10,$ if $A_r,B_r$ and $C_r$ denote respectively the coefficient of $x^r$ in the expansions of $(1 + x)^{10}, (1 + x)^{20}$ and $(1 + x)^{30}$. Then, $\displaystyle \sum A_r(B_{10}B_r-C_{10}A_r)$ is equal to

IIT JEE 2010 Binomial Theorem

## 3. Let $\omega \ne 1$ be a cube root of unity and S be the set of all non-singular matrices of the form $\begin {bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end {bmatrix}$ where each of a , b and c is either $\omega \ or \ omega^2$ Then, the number of distinct matrices in the set S is

IIT JEE 2011 Determinants

## 4. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 5. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 6. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

JEE Main 2013 Straight Lines

## 7. The centre of the circle passing through the point (0, 1)and touching the curve $y = x^2 at (2,4)$ is

IIT JEE 1983 Conic Sections

## 8. Let AB be a chord of the circle $x^2 + y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the $\Delta PAB$ as P moves on the circle, is

IIT JEE 2001 Conic Sections

## 9. The integral $\int^{\pi/2}_{\pi/4} ( 2 \, cosec \, x )^{17} \, dx$ is equal to

JEE Advanced 2014 Integrals

## 10. The coefficient of $x^n$ in expansion of $(1+ x)(1- x)^n$ is

AIEEE 2004 Binomial Theorem