Q. Charge is distributed within a sphere of radius R with a volume charge density $\rho (r) = \frac{A}{r^2} e^{-2r/a}$ where A and a are constants. If Q is the total charge of this charge distribution, the radius R is :

Solution:

$Q = \int \rho dv $
$ = \int^{R}_{0} \frac{A}{r^{2}} e^{-2r/a} \left(4\pi r^{2} dr \right)$
$ = \int^{R}_{0} \frac{A}{r^{2}} e^{-2r/a} \left(4 \pi r^{2} dr\right) $
$ = 4 \pi A \int^{R}_{0} e^{-2r/a} dr $
$ = 4\pi A \left( \frac{e^{-2r/a}}{- \frac{2}{a}}\right) ^{R}_{0} $
$ = 4\pi A \left(- \frac{a}{2}\right) \left(e^{-2 R/a} -1\right) $
$ Q = 2 \pi aA\left(1 - e^{-2R/a} \right) $
$ R = \frac{a}{2} \log \left(\frac{1}{1- \frac{Q}{2\pi aA}}\right) $

Solition Image

You must select option to get answer and solution

Questions from JEE Main 2019

Physics Most Viewed Questions

6. The spectrum of an oil flame is an example for ...........

KCET 2010 Dual Nature Of Radiation And Matter