# Q. Let $\omega \ne 1$ be a cube root of unity and S be the set of all non-singular matrices of the form $\begin {bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end {bmatrix}$ where each of a , b and c is either $\omega \ or \ omega^2$ Then, the number of distinct matrices in the set S is

IIT JEEIIT JEE 2011Determinants

Solution:

## | A | $\ne$ 0, as non-singular $\therefore \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin {bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end {bmatrix} \ne 0$ $\Rightarrow \ \ \ \ \ 1(1-c\omega)-a(\omega-\omega^2)+b(\omega^2+\omega^2) \ne 0$ $\Rightarrow \ \ \ \ \ 1-c\omega-a\omega+ac\omega^2 \ne 0 \ \ \Rightarrow \ \ \ (1-c\omega) (1-a\omega)\ne 0$ $\Rightarrow \ \ \ \ a \ne \frac{1}{\omega}, c \ne \frac{1}{\omega}$ $\Rightarrow \ \ \ \ a=\omega, c=\omega$ and $b \ \in \{\omega,\omega^2\} \ \ \Rightarrow \ \ \ 2$ solutions

You must select option to get answer and solution

Conic Sections

Vector Algebra

Conic Sections

Conic Sections

IIT JEE 1999

IIT JEE 2010

IIT JEE 2004

IIT JEE 1997

IIT JEE 2002

IIT JEE 2012

IIT JEE 2011

AIEEE 2014

AIEEE 2002 Sets

## 2. For $r = 0, 1, ... , 10,$ if $A_r,B_r$ and $C_r$ denote respectively the coefficient of $x^r$ in the expansions of $(1 + x)^{10}, (1 + x)^{20}$ and $(1 + x)^{30}$. Then, $\displaystyle \sum A_r(B_{10}B_r-C_{10}A_r)$ is equal to

IIT JEE 2010 Binomial Theorem

## 3. The centre of the circle passing through the point (0, 1)and touching the curve $y = x^2 at (2,4)$ is

IIT JEE 1983 Conic Sections

## 4. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

COMEDK 2013 Straight Lines

## 5. A ray of light along $x+\sqrt 3 \, y=\sqrt 3$ gets reflected upon reaching X-axis, the equation of the reflected ray is

COMEDK 2013 Straight Lines

## 6. Perpendicular are drawn from points on the line $\frac{x+2}{2}=\frac{y+1}{-1}= \frac{z}{3}$ to the plane $x+ y + z = 3$. The feet of perpendiculars lie on the line

JEE Advanced 2013 Introduction to Three Dimensional Geometry

## 8. Let AB be a chord of the circle $x^2 + y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the $\Delta PAB$ as P moves on the circle, is

IIT JEE 2001 Conic Sections

## 9. The coefficient of $x^n$ in expansion of $(1+ x)(1- x)^n$ is

JEE Main 2004 Binomial Theorem

## 10. If $\int\limits \frac{\cos \, 8x + 1}{ \tan \, 2x - \cot \, 2x} dx = a \, \cos \, 8x + c ,$ then $a$ =

COMEDK 2015 Integrals