## KCET Physics Question Paper with Solution 2019 April 29th & 30th

### A

### speeds up in dee

### B

### undergoes acceleration all the time

### C

### slows down within a dee and speeds up between dees

### D

### speeds up between the dees because of the magnetic field.

### A

### Both voltage and current sensitivity remains constant

### B

### Voltage sensitivity increases 3 times and current sensitivity remains constant

### C

### Both voltage and current sensitivity decreases by 33%

### D

### Voltage sensitivity remains constant and current sensitivity increases 3 times

### A

### $\frac{MB}{2}$

### B

### MB

### C

### Zero

### D

### $\sqrt \frac{MB}{2}$

### A

### domains are partially aligned.

### B

### magnetic moment of each molecule is zero

### C

### domains are all perfectly aligned

### D

### the individual molecules have non-zero magnetic moment which are all perfectly aligned

### A

### both number density of charge carriers and relaxation time increase

### B

### number density of charge carriers increases

### C

### number density of current carriers increases, relaxation time decreases but effect of decrease in relaxation time is much less than increase in number density

### D

### relaxation time increases

### A

### is low at high and low frequencies and constant at mid frequencies

### B

### remains constant for all frequencies

### C

### constant at high frequencies and low at low frequencies

### D

### is high at high and low frequencies and constant in the middle frequency range

### A

### P = 0, Q = l

### B

### P = 0, Q = 0

### C

### P = l, Q = 1

### D

### P = 1, Q = 0

### A

### 15 km

### B

### 15 m

### C

### 3 km

### D

### 300 m

### A

### $\frac{PQ}{R}$

### B

### $\frac{P-Q}{R}$

### C

### $\frac{PR-Q^2}{R}$

### D

### PQ-R

### A

### $25 ms^{−1}$

### B

### $\frac{2}{5} ms^{−1}$

### C

### $\frac{5}{2} ms^{−1}$

### D

### $5 ms^{−1}$

### A

### Total linear momentum

### B

### Total kinetic energy

### C

### Speed of each body

### D

### Total mechanical energy

### A

### of the order of $10^{−10}$ m

### B

### zero

### C

### of the order of $10^{−6}$ m

### D

### of the order of $10^{−14}$ m

### A

### n independent of n

### B

### $\frac{1}{n^2}$

### C

### $\frac{1}{n^3}$

### D

### n

### A

### $3.16 \times 10^{−34}$ Js

### B

### $1.05 \times 10^{−34}$ Js

### C

### $4.22 \times 10^{−34}$ Js

### D

### $2.11 \times 10^{−34}$ Js

### A

### $F_e <

### B

### $F_e =F_n$

### C

### $F_e$ and $F_n$ differ only slightly

### D

### $F_e >> F_n$

### A

### $60^\circ$

### B

### $30^\circ$

### C

### $90^\circ$

### D

### $45^\circ$

### A

### 5 km/s

### B

### 25 km/s

### C

### 20 km/s

### D

### 10 km/s

### A

### decreases with time

### B

### remains constant

### C

### increase and decreases periodically

### D

### increases with time

### A

### $3.2\times10^{-4}$ T

### B

### $1.6\times10^{-4}$ T

### C

### $0.8\times10^{-4}$ T

### D

### $0.4\times10^{-4}$ T

### A

### $6.28 J/m^3$

### B

### $0.628 J/m^3$

### C

### $3.14 J/m^3$

### D

### $0.314 J/m^3$

### A

### decrease

### B

### increase

### C

### increase or decrease depending on whether the semicircle bulges towards the resistance or away from it

### D

### remain same

### A

### 0.02s

### B

### $5\times10{-3}$ s

### C

### $10\times10{-3}$ s

### D

### $2.5\times10{-3}$ s

### A

### 2.7 A, 220 V

### B

### 1.2 A, 120 V

### C

### 2.2 A, 220 V

### D

### 1.5 A, 100 V

### A

### remains constant

### B

### increases

### C

### first increases then decreases

### D

### decreases

### A

### $\sqrt{3}K$

### B

### K

### C

### $2\sqrt{2}K$

### D

### 2K

### A

### 0.25

### B

### 0.50

### C

### - 0.25

### D

### - 0.50

### A

### $\frac{V}{R^2+\omega^2L^2}$

### B

### $\frac{R^2+\omega^2L^2}{V}$

### C

### $\frac{V^2R}{\sqrt{R^2+\omega^2L^2a}}$

### D

### $\frac{V^2R}{R^2+\omega^2L^2}$

### A

### $\vec{B_{y}}=\frac{E_{o}}{C}sin\left(kx-\omega t\right)\widehat{j}$

### B

### $\vec{B_{y}}=E_{o}Csin\left(kx-\omega t\right)\hat{j}$

### C

### $\vec{B_{z}}=\frac{E_{o}}{C}sin\left(kx-\omega t\right)\widehat{k}$

### D

### $\vec{B_{z}}=E_{o}Csin\left(kx-\omega t\right)\hat{k}$

### A

### dispersion of light by water molecules during the formation of a rainbow

### B

### reflection of light by plane mirror

### C

### scattering of light by air particles

### D

### total internal reflection of light in air during a mirage

### A

### zero

### B

### $40 cm s^{-1}$

### C

### infinity

### D

### $20 cm s^{-1}$

### A

### Buoyancy in water at 0 °C will be same as that in water at 4 °C

### B

### Buoyancy will be less in water at 0 oC than that in water at 4 oC

### C

### Buoyancy may be more or less in water at 4 oC depending on the radius of the sphere

### D

### Buoyancy will be more in water at 0 °C than that in water at 4 oC

### A

### −750 J

### B

### 750 J

### C

### 1250 J

### D

### − 1250 J

### A

### 750 R

### B

### Zero

### C

### 1050 R

### D

### 450 R

### A

### 22.5 units

### B

### 7.5 units

### C

### 30 units

### D

### 1.5 units

### A

### conservation of momentum

### B

### conservation of current density vector

### C

### conservation of charges

### D

### conservation of energy

### A

### $6 V, 2 \Omega$

### B

### $3 V, 2 \Omega$

### C

### $6 V, 0.5 \Omega$

### D

### $3 V, 0.5 \Omega$

### A

### $1\Omega$

### B

### $4\Omega$

### C

### $0.5\Omega$

### D

### $2\Omega$

### A

### $\frac{3}{10}\frac{\mu_{0}I}{R}$

### B

### $\frac{7}{14}\frac{\mu_{0}I}{R}$

### C

### $frac{\mu_{0}I}{12R}$

### D

### $\frac{5}{12}\frac{\mu_{0}I}{R}$

### A

### 200 V/m

### B

### 500 V/m

### C

### 3000 V/m

### D

### 1000 V/m

### A

### $\frac{Q}{3}, \frac{2Q}{3}$

### B

### $\frac{Q}{2}, \frac{Q}{2}$

### C

### $\frac{Q}{5}, \frac{4Q}{5}$

### D

### $\frac{Q}{4}, \frac{3Q}{4}$

### A

### electron number density depends on temperature

### B

### electron number density is very large

### C

### relaxation time is small

### D

### drift velocity of electron is very large

### A

### 1 : 15 : 125

### B

### 1 : 3 : 5

### C

### 125 : 15 : 1

### D

### 5 : 3 : 1

### A

### a torque but not a force

### B

### a force and torque

### C

### neither a force nor a torque

### D

### a force but not a torque

### A

### E_{B} =E_{D} and E_{A}< E_{C}

### B

### E_{A} > E_{B} > E_{C} > E_{D}

### C

### E_{A} < E_{B} < E_{C} < E_{D}

### D

### E_{A} = E_{C} and E_{B} < E_{D}

### A

### may increase or decrease

### B

### increases in any case

### C

### remains the same

### D

### decreases in any case

## KCET Chemistry Question Paper with Solution 2019 April 29th & 30th

### A

### Dacron

### B

### Bakelite

### C

### Nylon 6, 6

### D

### Nylon 6

### A

### Cetyl trimethyl ammonium bromide

### B

### Sodium dodecyl benzene sulphonate

### C

### Sodium lauryl sulphate

### D

### Sodium stearate

### A

### Amoxycillin

### B

### Chloroxylenol

### C

### Bromopheneramine

### D

### Morphine

### A

### Lanthanoids

### B

### Halogens

### C

### Actinoids

### D

### Transition elements

### A

### Atomic size of Ce is more than that of Lu.

### B

### Ce shows common oxidation states of +3 and +4.

### C

### Ce^{4+} is a reducing agent.

### D

### Ce in +3 oxidation state is more stable than in +4.

### A

### The vapours contain CrO_{2}Cl_{2} and Cl_{2}.

### B

### The vapours when passed into lead acetate in acetic acid gives a yellow precipitate.

### C

### The vapours give a yellow solution with NaOH.

### D

### The vapours contain CrO_{2}Cl_{2} only.

### A

### Metals in highest oxidation states are more stable in oxides than in fluorides,

### B

### All elements of 3d series exhibit variable oxidation states.

### C

### In highest oxidation states, the transition metals show acidic character.

### D

### Mn^{3+} and Co^{3+} are oxidizing agents in aqueous solution.

### A

### 0.5×10^{−3} M

### B

### 1.0×10^{−2} M

### C

### 5×10^{−3} M

### D

### 5×10^{−2} M

### A

### decrease

### B

### increase or decrease depending on the strength of the current.

### C

### increase

### D

### remains unchanged

### A

### 1.7 V

### B

### 2.1 V

### C

### 0.3 V

### D

### 0.1 V

### A

### L mo1^{−1} s^{−1}

### B

### s^{−1}

### C

### mo1^{−1} s

### D

### mo1^{−1} s^{−1}

### A

### 1.25 x 10^{−7} m

### B

### 1.0 x 10^{−7} m

### C

### 1.0 x 10^{−8} m

### D

### 2.5 x 10^{−8} m

### A

### P < Si < C < N

### B

### Si < P < C < N

### C

### C < N < Si < P

### D

### P < Si < N < C

### A

### logK=logV+logT

### B

### $\frac{d(ln V)}{dT} = \frac{1}{T}$

### C

### $\frac{V}{T}=K$

### D

### logV=logK+logT

### A

### Benzoyl peroxide

### B

### Sn and NaOH solution

### C

### Tollen’s reagent

### D

### I_{2} and NaOH solution

### A

### (CH_{3})_{2}NH

### B

### C_{6}H_{5}NH_{2}

### C

### CH_{3}NH_{2}

### D

### (CH_{3})_{3}N

### A

### m & p directing property of −NH_{2} group

### B

### isomerization of some p-nitroaniline into m-nitroaniline

### C

### m-directing property of −NH_{2} group

### D

### protonation of −NH_{2} which causes deactivation of benzene ring

### A

### Phosphodisulphide linkage

### B

### Sulphodiester linkage

### C

### Phosphoester linkage

### D

### Phosphodiester linkage

### A

### Amylose

### B

### Glycine

### C

### Fibrous protein

### D

### Vitamin-C

### A

### 5, 11

### B

### 5, 20

### C

### 6, 19

### D

### 5, 19

### A

### $N_{2\left(g\right)} + 3H_{2\left(g\right)} \to 2NH_{3\left(g\right)}N_{2\left(g\right)}$

### B

### $CH_{4\left(g\right) }+ 2O_{2\left(g\right)} \to CO_{2\left(g\right)} + 2H_{2}O_{\left(l\right)}$

### C

### $N_{2\left(g\right)} + O_{2\left(g\right)} \to 2NO_{\left(g\right)}$

### D

### $CaCO_{3\left(S\right)} \to CaO_{\left(S\right)} + CO_{2\left(g\right)}$

### A

### Bronsted acid

### B

### Lewis acid

### C

### Protonic acid

### D

### Lewis base

## Q31. Match the following pKa values:

Acid | pKa | ||
---|---|---|---|

(a) | Phenol | (1) | 16 |

(b) | p-Nitrophenol | (2) | 0.78 |

(c) | Ethanol | (3) | 10 |

(d) | Picric acid | (4) | 7.1 |

### A

### a -> 3, b -> 1, c -> 4, d -> 2

### B

### a -> 4, b -> 2, c -> 3, d -> 1

### C

### a -> 3, b -> 4, c -> 1, d -> 2

### D

### a -> 2, b -> i, c -> 2, d -> 4

### A

### NaHCO_{3}

### B

### Na metal

### C

### Blue litmus solution

### D

### Na_{2}CO_{3}

### A

### NaBH_{4}, PCC, H_{2}/Pd

### B

### H_{2}/Pd, alk. KMnO_{4}, NaBH_{4}

### C

### H_{2}/Pd, PCC, NaBH

### D

### NaBH_{4}, alk. KMnO_{4}, H_{2}/Pd

### A

### weaker acid than propanoic acid

### B

### stronger than dichloropropanoic acid

### C

### stronger acid than propanoic acid

### D

### as stronger as propanoic acid

### A

### C_{6}H_{5}COCl

### B

### C_{6}H_{5}COOH

### C

### C_{6}H_{5}CHO

### D

### C_{6}H_{5}CH_{2}OH

### A

### 6 x 10^{23}

### B

### 6 x 10^{19}

### C

### 6 x 10^{22}

### D

### 6 x 10^{20}

### A

### 6.022 x 10^{23}

### B

### 12.044 x 10^{20}

### C

### 6.022 x 10^{18}

### D

### 6.022 × 10^{15}

### A

### negative and negative

### B

### negative and positive

### C

### positive and positive

### D

### positive and negative

### A

### XeF_{4}, NH_{3}

### B

### SO^{2−4 , H2S}

### C

### I^{+}_{3}, H_{2}O

### D

### H_{2}O, NF_{3}

### A

### F_{2} oxidises H_{2}O to O_{2} but Cl_{2} does not.

### B

### Fluoride is a good oxidizing agent.

### C

### Cl_{2} oxidises H_{2}O to O_{2} but F_{2} does not.

### D

### Cl_{2} is a stronger oxidizing agent than F_{2} .

### A

### XeOF_{4}

### B

### Xe + XeO_{3}

### C

### XeO_{3}

### D

### XeO_{2}F_{2}

### A

### +5 to +2

### B

### +3 to +1

### C

### +4 to +2

### D

### +6 to +4

### A

### 1 : 2 electrolyte

### B

### 1 : 4 electrolyte

### C

### 1 : 1 electrolyte

### D

### 1 : 3 electrolyte

### A

### [Cr(H_{2}O)_{5} NO_{3}] (NO_{3})_{2}

### B

### [Cr(H_{2}O)5NO_{2}] NO_{3}

### C

### [Cr(H_{2}O)_{6}] (NO_{3})_{3}

### D

### [Cr(H_{2}O)_{6}] (NO_{2})_{2}

### A

### ln k vs 1/T plot is a straight line.

### B

### presence of catalyst will not alter the value of Ea

### C

### Rate constant k = Arrhenius constant A: if Ea = 0

### D

### e^{-Ea/RT} gives the fraction of reactant molecules that are activated at the given temp

### A

### Oxidation of SO_{2} in lead chamber process

### B

### manufacture of NH_{3} by Haber’s process

### C

### oxidation of NH_{3} in Ostwald’s process

### D

### oxidation of SO_{2} in contact process

### A

### 7.5 x 10^{−5}

### B

### 1.1 x 10^{−4}

### C

### 2.0 x 10^{−3}

### D

### 4.6 x 10^{−5}

### A

### Combustion product is ecofriendly.

### B

### Hydrogen gas can be easily liquefied and stored.

### C

### High calorific value

### D

### The combustible energy of hydrogen can be directly converted to electrical energy in a fuel cell.

### A

### CH_{2}=CH−Cl

### B

### CH_{2}=CH−CH_{2}−NH_{2}

### C

### CH_{2}=CH−CH=CH_{2}

### D

### CH_{2}=CH−C≡N

### A

### H_{2}|Pd−C

### B

### Zn in dil. HCl

### C

### H_{2}|Ni

### D

### Na in liq. NH_{3}

### A

### reduction in dissolved oxygen

### B

### decreases BOD

### C

### increase of nutrients in water

### D

### reduction in water pollution

## KCET Mathematics Question Paper with Solution 2019 April 29th & 30th

### A

### $\begin{bmatrix}3&-15&5\\ -1&6&-2\\ 1&-5&2\end{bmatrix}$

### B

### $\begin{bmatrix}3&-1&1\\ -15&6&-5\\ 5&-2&2\end{bmatrix}$

### C

### $\begin{bmatrix}3&-15&5\\ -1&6&-2\\ 1&-5&-2\end{bmatrix}$

### D

### $\begin{bmatrix}3&-5&5\\ -1&-6&-2\\ 1&-5&2\end{bmatrix}$

### A

### zero matrix

### B

### identity matrix

### C

### skew symmetric matrix

### D

### symmetric matrix

### A

### $\begin{bmatrix}-1&-18\\ 4&-16\\ -5&-7\end{bmatrix} $

### B

### $\begin{bmatrix}1&3\\ -1&1\\ 2&4\end{bmatrix} $

### C

### $\begin{bmatrix}1&3\\ -1&1\\ 2&-4\end{bmatrix} $

### D

### $ \begin{bmatrix}1&-3\\ -1&1\\ 2&4\end{bmatrix} $

### A

### $- \frac{x^{3} .\cos3x}{3} + \frac{x^{2} \sin3x}{3} + \frac{2x \cos3x}{9} - \frac{2\sin3x}{27} +C $

### B

### $- \frac{x^{3} \cos3x}{3} - \frac{x^{2} \sin3x}{3} + \frac{2x \cos3x}{9} - \frac{2\sin3x}{27} +C $

### C

### $- \frac{x^{3} \cos3x}{3} + \frac{x^{2} \sin3x}{3} - \frac{2x \cos3x}{9} - \frac{2\sin3x}{27} +C $

### D

### $ \frac{x^{3} \cos3x}{3} + \frac{x^{2} \sin3x}{3} - \frac{2x \cos3x}{9} - \frac{2\sin3x}{27} +C $

### A

### $\frac{2}{3} - \frac{\pi}{4}$

### B

### $\frac{\pi}{4} - \frac{3}{2}$

### C

### $\frac{\pi}{4} - \frac{2}{3}$

### D

### $\frac{3}{2} - \frac{\pi}{4}$

### A

### $\sqrt{2} + 1 $ Sq.units

### B

### $\sqrt{2} - 1 $ Sq.units

### C

### $ 2 - \sqrt{2} $ Sq.units

### D

### $ \sqrt{2} $ Sq.units

### A

### $\frac{1}{x} $

### B

### $\frac{1}{e_y} $

### C

### $\frac{1}{y^2} $

### D

### $ - \frac{1}{y^2} $

### A

### $2 \log y = x^2 $

### B

### $ 2 \log x = y^2 - 1$

### C

### $2 \log x =y^2 + 1 $

### D

### $ 2 \log y = x^2 + 1 $

### A

### (1, 2, -3 )

### B

### ( - 1, 4, 3 )

### C

### (-3, 5 , 2 )

### D

### (0, - 4 , -7)

### A

### $\cos^{-1} \left(\frac{5}{2\sqrt{3}}\right)$

### B

### $\cos^{-1} \left(\frac{9}{\sqrt{364}}\right)$

### C

### $\sin^{-1} \left(\frac{5}{2\sqrt{3}}\right)$

### D

### $\sin^{-1} \left(\frac{9}{\sqrt{364}}\right)$

### A

### $\frac{\sqrt{5}}{3}$

### B

### $\frac{2 \sqrt{3}}{5}$

### C

### $\frac{20}{3}$

### D

### $\frac{2 \sqrt{5}}{3}$

### A

### 5 : 3 internally

### B

### 2 : 1 internally

### C

### 5 : 3 externally

### D

### 3 : 2 externally

### A

### $4x + 5y \le 20, 3x + 10y \le 30, x \le 6, x, y \ge 0$

### B

### $4x + 5y \ge 20, 3x + 10y \le 30, x \le 6, x, y \ge 0$

### C

### $4x + 5y \le 20, 3x + 10y \le 30, x \ge 6, x, y \ge 0$

### D

### $4x + 5y \ge 20, 3x + 10y \le 30, x \ge 6, x, y \ge 0$

### A

### $\frac{1}{2}$

### B

### $\frac{3}{2}$

### C

### $\frac{2}{3}$

### D

### $\frac{9}{5}$

### A

### $\frac{2 \log 2 }{5}$

### B

### 2 log 2

### C

### $\frac{4 \log 2 }{5}$

### D

### log 2

### A

### $\frac{ - 1 - i \sqrt{3}}{2}$

### B

### 1

### C

### -1

### D

### $\frac{ - 1 + i \sqrt{3}}{2}$

### A

### $3^{10}$

### B

### $3^5$

### C

### $3^{12}$

### D

### $3^9$

### A

### $120^{\circ}$

### B

### $45^{\circ}$

### C

### $135^{\circ}$

### D

### $90^{\circ}$

### A

### $\frac{3}{4}$

### B

### $\frac{4}{5}$

### C

### $\frac{9}{16}$

### D

### $\frac{3}{5}$

### A

### 1

### B

### $\frac{1}{2}$

### C

### 4

### D

### $\frac{1}{4}$

### A

### Some continuous functions are not differentiable

### B

### All continuous functions are not differentiable.

### C

### All differentiable functions are continuous.

### D

### Some continuous functions are differentiable

### A

### 266000

### B

### 251600

### C

### 261600

### D

### 256100

### A

### $\frac{3}{9}$

### B

### $\frac{8}{9}$

### C

### $\frac{5}{9}$

### D

### $\frac{4}{9}$

### A

### fog (2) = 2

### B

### gof (4) = 4

### C

### gof (-2) = 2

### D

### fog (-4) = 4

### A

### $\frac{2}{5}$

### B

### $\frac{1}{6}$

### C

### $\frac{125}{48}$

### D

### $\frac{5}{12}$

### A

### $\frac{3}{5}$

### B

### $\frac{-3}{4}$

### C

### does not exist

### D

### $\frac{3}{4}$

### A

### 0 and 2$\pi$

### B

### 0 and $\pi$

### C

### $\frac{ - \pi}{2}$ and $\frac{\pi}{2}$

### D

### $\frac{\pi}{2}$ and $2\pi$

### A

### $1 \le x \le \frac{9}{3}$

### B

### $ - 1 \le x \le \frac{7}{3}$

### C

### $ - 1 \le x \le \frac{9}{3}$

### D

### $1 \le x \le \frac{7}{3}$

## Q37. A random variable ‘X’ has the following probability distribution:

x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

P(x) | k-1 | 3k | k | 3k | $3k^2$ | $k^2$ | $k^2 + k$ |

Then the value of k is